点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:盈彩网投资平台官网平台|盈彩网投资平台漏洞
首页>文化频道>要闻>正文

盈彩网投资平台官网平台|盈彩网投资平台漏洞

来源:盈彩网投资平台计划群2024-09-22 17:48

  

冬至阳生春又来******

  【节气里的韵味中国】

  作者:张汀 单位:文化和旅游部恭王府博物馆

  “天时人事日相催,冬至阳生春又来。”冬至已至,农历壬寅年也行将结束。在冬至这一天,白天在全年间达到最短,黑夜达到最长。南朝崔灵恩《三礼义宗》载:“(冬至)有三义:一者阴极之至,二者阳气始至,三者日行南至,故谓之冬至也。”自冬至起,白昼逐日增长,太阳往返运动进入新的循环,因此古人认为天地阳气自此时起开始兴作渐强。冬至象征着新生,预示着否极泰来,万象更新,故从古至今都被视为吉日。

冬至阳生春又来

12月17日,在云南省曲靖市沾益区,雪落在植物上。新华社发

  那么人们都是怎么庆贺“大如年”的冬至的呢?《汉书》中记载:“冬至阳气起,君道长,故贺。”《后汉书·礼仪》有云:“冬至前后,君子安身静体,百官绝事。”不仅要放假,还要修养身心,相互庆贺。仪式方面,要挑选“八能之士八人”,鼓瑟吹笙,奏“黄钟之律”。《晋书》中也有“魏晋冬至日受万国及百僚称贺……其仪亚于正旦”等记载。可见在一千多年前,冬至在皇家就已经颇受推崇,选择在太阳回返的日子里行祭祀天地的大礼。

冬至阳生春又来

12月11日,云南省香格里拉市建塘镇植物结霜。新华社发

  到了唐宋年间,冬至的地位与元旦近乎平起平坐。关于民间百姓的庆祝方式,在南宋孟元老的《东京梦华录》中写明:“十一月冬至,京师最重此节,虽至贫者,一年之间,积累假借,至此日更易新衣,备办饮食,享祀先祖……一如年节。”宋末元初的《武林旧事》这样记载冬至:“朝廷大朝会庆贺排当,并如元正仪,而都人最重一阳贺冬,车马皆华整鲜好,五鼓已填拥杂沓于九街。妇人小儿,服饰华炫,往来如云。岳祠城隍诸庙,炷香者尤盛。三日之内,店肆皆罢市,垂帘饮博,谓之‘做节’。”可见,在皇家的影响下,冬至在民间百姓心目中的地位也颇高。人们一年间努力工作,开源节流,只为在冬至假期时和家人穿上新衣、打扮妥帖,参与异彩纷呈的节日活动,过个开心体面的节日。

  到了明清时,冬至的地位更上一层。皇帝要亲自祭天,百官要进表朝贺。《帝京景物略》中记录了人们欢度冬至时的盛况:“百官贺冬毕,吉服三日,具红笺互拜,朱衣交于衡,一如元旦。”冬至在我国古代节日中的地位可见一斑。无论君民,无论一年间经历多少辛苦,都要在这一天进行“贺冬”,普天同庆,好不热闹。

冬至阳生春又来

  12月17日,在福建省武夷山市,人们在吃汤圆时放上一勺桂花金橘蜜,寓意新的一年生活甜蜜,富贵吉祥,团团圆圆。新华社发

  到了20世纪初,民国政府开始学习西方,推行公历,在传统春节的基础上增设元旦节(公历1月1日),为保证其顺利推行,官方通过放假庆祝等活动表示对元旦的重视。农历正月初一为春节,也沿袭了从古至今冬至的大部分传统节俗。于是近代以来,冬至在很长时间内被春节替代,地位大不如前。但关于冬至的点点滴滴,依然存在于许多人的记忆之中,也被许多文人墨客记录在他们的作品中,引起了更多人的共鸣。它是包天笑笔下“儿童辈”都“竞饮”的苏州“冬酿酒”;是汪曾祺笔下,家乡高邮的“炒米糖”“欢喜团”;是肖复兴笔下老北京沿街吆喝“萝卜赛梨”的“萝卜挑”;是林清玄描绘的吃完汤圆,全家围炉喝茶的温馨景象;是二月河叙述的一家老小,炒菜烫酒,祭祖宗,拜喜神,大快朵颐。

冬至阳生春又来

12月10日,在山东省枣庄市,人们把热气腾腾的饺子端上餐桌。新华社发

  时至今日,我们依然会像前人一样,根据物候变化在生产生活上做出一些调整。姑苏人家依然酿米酒,北方居民依然包饺子,西南地区的羊肉汤香气四溢,汤圆依然象征中国人最希冀的团圆;还有九九消寒图、年画等给冬至增加亮色,人们祀家庙、设家宴、拜尊长,找回冬至往日的神圣与温暖,并在此基础上融入当代生活方式,为这个古老节俗增添了活力。

  春生冬至时。在这一年中黑夜最为漫长、春天悄然生发的时节,不如吃碗热汤圆。正如汪曾祺转述母亲的话:“吃完这碗汤圆,就又长大了一岁。”

  《光明日报》( 2022年12月22日 09版)

盈彩网投资平台官网平台

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 共82处!2022年我国新增国际重要湿地18处

  • 吴奇隆当爸微博报喜:母子平安

独家策划

推荐阅读
盈彩网投资平台走势图 想听最标准的普通话?别去北京,要去这个小县城
2024-08-15
盈彩网投资平台手机版APP重庆成台资西移投资“洼地” 2021年新增台企逾四成
2024-06-18
盈彩网投资平台投注周天勇:如何理解人类命运共同体
2024-06-05
盈彩网投资平台app下载春天的故事:蒋开儒和申进科将联袂传播健康文化
2024-07-28
盈彩网投资平台官网奥地利85后总理北京街头录视频 展示访华成果
2023-11-28
盈彩网投资平台登录美前军官:特朗普来给美国灭虫
2024-01-31
盈彩网投资平台交流群章子怡带女儿农场摘蔬果
2023-12-24
盈彩网投资平台登录看起来很优雅 奔驰全新C级正在纽北测试
2024-05-13
盈彩网投资平台返点北京已建50余家跨境电商体验店,今年再增10家
2024-06-19
盈彩网投资平台APP带有特殊标识 雪铁龙C1/C3百年纪念版发布
2024-03-08
盈彩网投资平台攻略周冬雨宋茜的初夏最爱 清爽衬衫裙迎五一小长假
2024-03-22
盈彩网投资平台邀请码 5本意境优雅的经典诗词解析
2024-01-09
盈彩网投资平台盘点上市公司董事长的另类故事:失联刑拘被夺权
2024-10-18
盈彩网投资平台软件巴萨国王杯国家德比名单:梅西入选
2024-10-18
盈彩网投资平台开户欧文准三双字母哥失准 绿军22分大胜雄鹿1-0
2024-02-27
盈彩网投资平台计划加快世界一流师范大学建设 培养新时代卓越教师
2024-02-16
盈彩网投资平台下载app奥迪"异味门"升级!相关部门介入调查
2024-10-15
盈彩网投资平台代理2019年12星座开财运大法
2024-09-12
盈彩网投资平台骗局西班牙城市三宝 建筑美女和海鲜
2024-03-23
盈彩网投资平台注册社交圈:抛开裁判问题 火箭G1是否比勇士更出色?
2024-10-15
盈彩网投资平台官方唐艺昕穿白衣戴白帽现身 笑容甜似蜜
2024-04-02
盈彩网投资平台赔率第5期|马振山:不进则退 一汽-大众“两把火”暖寒冬
2024-07-10
盈彩网投资平台网址天文学家将进行关于是否恢复冥王星“行星”地位辩论
2024-08-27
盈彩网投资平台官方网站80高龄的黑暗骑士,在游戏中书写过哪些传奇
2024-07-20
加载更多
盈彩网投资平台地图